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ABSTRACT

In several unpublished manuscripts written from 1993 to 1995, Michael Stein, C.L. Winter, and Robert
Tenney introduced a multitarget tracking and evidential-accumulation concept called a "Probability Hy-
pothesis Surface" (PHS) .A PHS is the graph of a probability distribution-the Probability Hypothesis
Density (PHD)-that, when integrated over a region in target state space, gives the expected number
of targets in that region. The PHD is uniquely defined by this property: Any other density function
that satisfies it must be the PHD. In particular , the PHD is the expected value of the point process of a
random track-set-i.e. , of the density that, when integrated over a region in state space, gives the exact
(random) number of targets in that region. In 1997 in the book Mathematics of Data Fusion I sketched
the elements of a theoretical foundation for PHS/PHD. The purpose of this paper is to publish a full
account of this material for the first time. We show that the PHD is a first-order moment statistic of the
random multitarget process and, consequently that from a computational perspective it is a multitarget
analog of single-target constant-gain Kalman filters such as the a-fJ-'Y filter.l

1.0 INTRODUCTION

In several unpublished manuscripts written during the period from 1993 to 1995, Michael Stein and
C.L. Winter (Los Alamos National Laboratory) and Robert Tenney (Alphatech Gorp.) introduced a
multitarget tracking and evidential-accumulation concept "called a "Probability Hypothesis Surface" or
"PHS" [20,19]. A PHS is the graph of a certain unnormalized probability distribution-the PHD or
Probability Hypothesis Density bklk(xIZ(k»)-that has the following property: Given any region S in
target state space, the integral Is bklk(xIZ(k»)dx is the expected number of targets contained in S. This
property characterizes the PHD uniquely. That is, if gk(X) is any other density which gives the expected
number of targets in S when integrated over S, then it is (no matter how imaginative the name one might
assign to it) nothing else but the PHD. For, since Is gk(x)dx = Is bklk(xIZ(k»)dx for all measurable S

then gk\k = bklk almost everywhere. In particular, the PHD is the expected value of the point process of
a random track-set-i.e., of the density that, when integrated over a region in state space, gives the exact
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(random) number of targets in that region (see Section 2.4). Stein and Winter devised the PHD concept
in part as a structure for a new inference technique called Weak Evidence Accrual (WEA) that exploits
the additive rather than multiplicative properties of Bayes' rule. We will not discuss this aspect of the
PHD approach in ~eat detail here (see, however, Theorem 5). Rather, we will discuss the potential
significance of the PHD as a computational strategy for Bayes-optimal multitarget filtering-specifically,
as a a multitarget-tracking analog of constant-gain Kalman filters such as the a-fJ-'Y filter that results in
additive information-update rules of the WEA type.

In 1997 in section 4.3.4, pages 168-170 of the book Mathematics of Data Fusion [7] I sketched
the elements of a theoretical foundation for PHD based on the "finite-set statistics (FISST)" approach
described in Chapters 2 and 4 through 8 of that book. Because of page limitations, the full description
of this work-specifically, the proofs of the various assertions-had to be cut from the final draft of the
book. The purpose of this paper is to publish this material in the open literature for the first time, as
well as to show how FISST tools such as the set derivative can be used to develop a Bayes filtering scheme
for PHD's. Because of space limitations, it is not possible to provide a summary of FISST and the FISST
calculus in this paper. See the mono~aph An Introduction to Multisource-Multitarget Statistics and Its
Applications [11] and the book chapter Multisensor-Multitarget Statistics [13] for more details.

1.1 APPROXIMATION WITH STATISTICAL MOMENTS

The theoretical starting-point of single-target tracking is the following Bayesian discrete-time recursive
nonlinear filtering equations (see [8], [17], [2, pp. 373-377), and [9, p. 174]:

fk+llk(Xk+lIZk) = !fk+llk(Xk+llxk) fklk(xkIZk)dxk

f ( IZ k+l ) f(Zk+llxk+l) fk+llk(Xk+lIZk)
k+llk+l Xk+l =

f(Zk+lIZk)

~MAP
Xk+llk+l -argsUp!k+llk+l(xIZk+l),

x

~EAP J f ( I k+l Xk+llk+l = X. k+llk+l X Z )dx

where

(1) Xk is the target state variable at time-step k and Zk is the observed measurement at time-step k;

(2) fklk(XkIZk) is the Hayes posterior distribution conditioned on the data-stream Zk = {Zl, ..., Zk};

(3) f(zlx) is the sensor likelihood function;

(4) fk+llk(Xk+llxk) is the target Markov transition density that models between-measurements target
motion;
(5) fk+llk(Xk+lIZk) is the time-prediction of the posterior fklk(XkIZk) to time-step k + 1;

(6) (Zk+lIZk) = Jf(Zk+lIYk+l) fk+llk(Yk+lIZk)dyk+l is the Hayes normalization constant; and

(7) X~1~+1 and X~:~k+l are the Hayes-optimal maximum a posteriori (MAP) and expected a posteriori
(EAP) state estimators, respectively.

In all of these formulas, data and state vectors have the form y = (Yl,...'Yn,Wl,...'Wn) where
Yl,...,Yn are continuous variables and Wl,...,Wn are discrete variables, and we denote the space of all
state vectors as S. Integrals of functions of such variables involve both summations and continuous
integrals. Since state vectors X may have discrete components, f(zlx) can encompass different
measurement models for different target types and fk+llk(Xk+llxk) can encompass different motion
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models for different target types. If the measurement and motion models are linear and Gaussian, the
above equations reduce to the Kalman time-update and information-update equations, respectively [8] .

All relevant information about the state-vector x of the target at time-step k is contained in
the Hayes posterior density function fklk(xIZk). Updating it to a new posterior fk+llk+l (XIZk+l )
using the Hayes filtering equations usually presents a formidable computational challenge. If signal-to-
noise ratio (SNR) is high enough that all time-evolving posteriors are not too complex, however, one can
compress the posterior into a finite number of summary statistics and propagate these statistics in time
instead of the posterior itself. The two most familiar summary statistics are the first-moment vector and
second-moment matrix

Xklk = ix fklk(xIZk)dx,

where "T" denotes matrix tranpose. If SNR is so high that the s~ond-order and higher moments can

be negl~ted then the first moment is approximately a sufficient statistic, fklk(xIZk) ~ fklk(xlxklk). In
this case we can propagate Xklk in time instead of the full distribution using a constant-gain Kalman
filter such as the a-fJ-'}' filter-i.e., using completely linear equations. Otherwise, if SNR is such that
the higher-order moments can be negl~ted but covariance cannot, then Xklk and Qklk are approximate
sufficient statistics, fklk(xIZk) ~ fklk(xlxklk, Qklk), and we can propagate Xklk and Qklk using a Kalman
filter .

1.2 STATISTICAL MOMENTS FOR MULTITARGET PROBLEMS

Stein and Winter's PHD approach can be thought of as, in part, an attempt to extend the reasoning just
outlined to multitarget tracking problems. In such problems the optimal approach would be to write
down the following multisensor, multitarget analogs of the Hayes nonlinear filtering equations:

fk+llk(Xk+lIZ(k

fk+llk+l (Xk+lIZ(k+l)

J fk+llk(Xk+lIXk) fklk(XkIZ(k)8Xk

f(Zk+lIXk+l) fk+llk(Xk+lIZ(k)

clXI
= args~p jXj! fk+llk+l (XIZk+l )

cx:

XJoM
k+llk+l

In this case,

(1') Xk is the multitarget state, i.e. the set of unknown target statffi (which are also of unknown number)
and Zk is the set of all measurements collected off of all targets at time-step k;

(2') fklk(XkIZ(k» is a multitarget posterior density at time-set k conditioned on the time-stream Z(k) =
{Zl,...,Zk};
(3') f( ZIX) is the multisensor, multitarget likelihood .function that dfficribffi the likelihood of observing
the observation-set Z given that the multitarget system has multitarget state-set X ;

(4') fk+llk(Xk+lIXk) is the multitarget Markov transition density that dfficribffi the likelihood that the
targets will have state-set Xk+l at time-step k + 1 given that they had state-set at time-step k;

(5') fk+llk(Xk+lIZ(k» is the time-prediction of the multitarget posterior fklk(XkIZ(k» to time-step
k+l;
(6') f(Zk+lIZ(k» = J f(Zk+lIY) fk+llk(YIZ(k»8Y is the Bayffi normalization constant; and

models for different target types.    If the measurement and motion models are linear and Gaussian, the 
above equations reduce to the Kaiman time-update and information-update equations, respectively [8]. 

All relevant information about the state-vector x of the target at time-step k is contained in 
the Bayes posterior density function fk\k(x\Zk). Updating it to a new posterior fk+1\k+1(x\Zk+1) 
using the Bayes filtering equations usually presents a formidable computational challenge. If signal-to- 
noise ratio (SNR) is high enough that all time-evolving posteriors are not too complex, however, one can 
compress the posterior into a finite number of summary statistics and propagate these statistics in time 
instead of the posterior itself. The two most familiar summary statistics are the first-moment vector and 
second-moment matrix 

^ = /x/„>(x|*)* 

where "T" denotes matrix tranpose. If SNR is so high that the second-order and higher moments can 
be neglected then the first moment is approximately a sufficient statistic, fk\k(x\Zk) = /fc|fc(x|xfc|fc). In 
this case we can propagate xk\k in time instead of the full distribution using a constant-gain Kaiman 
filter such as the a-ß-j filter—i.e., using completely linear equations. Otherwise, if SNR is such that 
the higher-order moments can be neglected but covariance cannot, then Xfc|fc and Qk\k are approximate 
sufficient statistics, fk\k{x\Zk) = fk\k(x\xk\k, Qk\k), and we can propagate xklk and Qfcifc using a Kaiman 
filter. 

1.2   STATISTICAL MOMENTS FOR MULTITARGET PROBLEMS 

Stein and Winter's PHD approach can be thought of as, in part, an attempt to extend the reasoning just 
outlined to multitarget tracking problems. In such problems the optimal approach would be to write 
down the following multisensor, multitarget analogs of the Bayes nonlinear filtering equations: 

fk+llk(Xk+1)Z(k J fk+i\k(Xk+1\Xk) fklk(Xk\zW)6Xk 

/fc+i|*+i(X*+1|Z
(fc+1)     oc   f(Zk+1\Xk+1) fk+llk(Xk+1\zW) 

rJoM d*l 
*Ä+1    =   argsup— fk+Mk+1{X\Zk+1) 

In this case, 

(1') Xk is the multitarget state, i.e. the set of unknown target states (which are also of unknown number) 
and Zk is the set of all measurements collected off of all targets at time-step k; 

(2')  /fc|fc(-Xfc|5/^) is a multitarget posterior density at time-set k conditioned on the time-stream Z^ = 
{Zi,...,Zk}; 

(3')   f(Z\X) is the multisensor, multitarget likelihood junction that describes the likelihood of observing 
the observation-set Z given that the multitarget system has multitarget state-set X; 

(4')   fk+i\k(Xk+i\Xk) is the multitarget Markov transition density that describes the likelihood that the 
targets will have state-set Xk+i at time-step k + 1 given that they had state-set at time-step k; 

(5')   fk+i\k{Xk+i\Z^>)   is the time-prediction of the multitarget posterior fk\k{Xk\Z^) to time-step 
fc + 1; 

(6')   f(Zk+1\ZW) = ff(Zk+1\Y) fk+1\k(Y\ZW)5Y is the Bayes normalization constant; and 



(7') Xt~tfk+l is a multitarget analog of the MAP estimator (whose direct multitarget extension is

undefined).
The multitarget filtering equations cannot be used in the blind fashion just indicated but, rather ,

require the tools of finite-set statistics (FISST). [7,11] A short history of multitarget Hayes filtering can
be found in Section 1. 4 below.

In more detail, a multitarget state-set X has the form

x=0, {x}, {Xl,X2} {Xi Xn

where X = 0 indicates that no target is present, X = {x} indicates that one target with state x is
present, X = {Xl,X2} indicates that two targets with states Xl,X2 are present, and so on. The Hayes

multitarget posterior fklk(XIZCk)) has the form

fklk(0\Z(k)

fklk({x}IZ(k)

- posterior likelihood that no targets are present

post. like. of one target with state x-

"Xn}IZ(k»)fklk({Xl, post. like. of n targets with states XI, .,Xn=

That is, letIt must sum to one over all multitarget states,

fklk(OIZ(k» = fklk(0IZ(k», ,xi}IZ(k))dxl d Xi

be the marginal posterior probability that there are i = 0,1,2, ...targets present. Then for fklk(XIZk)
to be a multitarget probability density the following quantity, called a set integral, must sum to one:

1 = J fklk(XIZ(k»6X = fklk(OIZ(k» + fklk(lIZ(k» + fklk(2IZ(k» + + fklk(nIZ(k» +

Given the formidable computational complexity of the single-target Hayes nonlinear filtering equa-
tions, it should be clear that this complexity will be magnified many-fold in multitarget problems. Drastic
but intelligent approximation strategies are required. In a recent paper [14] I proposed one computational
strategy based on a multitarget analog of the familiar Gaussian approximation. In this paper I exploit
a different computational analogy: propagating multitarget analogs of first-order (and/ or second-order )
moments of the time-evolving random track-set. I use the multitarget moments outlined in Section 4.3.4,
pages 168-170 of Mathematics of Data Fusion. [7] Let x be a fixed target state. Then for any i 2:: 1
the marginal-density value

i ! fk[k( {x, xi, ..., xi}IZ(k»)dxl ...d Xi
1,.

is the total posterior likelihood that the multitarget system has i + 1 targets and that one of these targets
has state x. Consequently, for each X the marginal-density value

xi}IZ(k)dxl d Xi
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is the total posterior likelihood that the multitarget system contains a target that has state x. Consequently,
Dklk( {X}IZ(k») will tend to have maxima approximately at the locations of the targets.

It can be shown (see Section 2.2) that fsDklk({x}IZ(k»)dx is the expected number of targets in S-
which means that Dklk({x}IZ(k») is the same thing as the Stein-Winter PHD bklk(xIZ(k»). Intuitively
speaking, just as the value of the probability density function fx(x) of a continuous random vector X
provides a means of describing the zero-probability event Pr(X = x), so the PHD br(x) of a finite
random track-set r provides a means of describing the zero-probability event Pr(x E r) (see Section
2.5). Also, the state vector x in any PHD should be interpreted as an accumulated (or compressed)
multitarget state rather than as a conventional single-target state.

Last but not least, from the point of view of point-process theory, the PHD is the same thing as the
expectation density or first factorial-moment density of the random track-set r at time-step k (see Section
2.4). This means, in particular, that bklk(xIZ(k») is a type of least-squares best-fit approximation of
the multitarget posterior fklk(XIZ(k») bya single-target density function (see Section 2.4). In this sense
the PHD is a multitarget analog of the single-target first-order moment Xklk. If the multitarget sensing
situation is benign enough-meaning that signal-to-clutter ratio (SCR) as well as SNR is large, then the
PHD will be an approximate sufficient statistic: fklk(XIZ(k») ~ fklk(Xlbklk). In principle, therefore,

it should be possible and desirable to propagate bklk(xIZ(k») instead of the full multitarget posterior
fklk(XIZ(k»), using suitable analogs of the single-target Hayes recursive filtering equations of Section 1.1.
Real-time multitarget tracking would then be, from a computational point of view, reduced to the (still
very difficult) problem of implementing a real-time single-target nonlinear filter capable of modeling the
rather complex time-evolution of the PHD.

That is, what we would like to be able to do is to establish the existence of a diagram of the form

~ f ~multitar get prediction f ~multitar get Bay es' rule f ~...~ klk ~ k+llk ~ k+llk+l ~ ...

! I
~ DA ~PHD

prediction??
D -~ - . D~ ~

...~ klk ~ k+llk ~ k+llk+l ~ ...

where: (1) the top row portrays the time-sequence of the multitarget Hayes filtering equations; (2)
the downward-pointing arrows indicate the replacement of multitarget posteriors by their corresponding
PHD's; and (3) the bottom row portrays a recursive time-sequence of filtering operations on PHD's that
always yields the result that one would get if one computed multitarget posteriors using only the top row
and then transformed them into their PHD approximations.

Our goal, then, is to fill in the "question marks" in the bottom row of the diagram. We will show
(Section 3.1) that the PHD bklk(xIZ(k») can, under certain assumptions, be time-propagated between
measurements to a new PHD bk+l!k(xIZ(k») using a suitable extension of the first of the two single-target
Hayes filtering equations of Section 1.1, one that accounts for multitarget behaviors such as appearance
and disappearance of targets. We will also show (Section 3.2) that, given a new multisensor-multitarget
observation-set Zk+l, the PHD bk+llk(xIZ(k» can be updated to a new PHD bk+l!k+l(xIZ(k+l»
using one of two different approximate methods. First, a relatively simple PHD version of Hayes'
rule; and second, a more complicated but "additive" update transformation based on the concept of the
" approximate multitarget p~terior" of a PHD.

1.3 RELATED APPROACHES

The idea of using a single-target density function gk!k (or, more commonly, probability contours of
its graph) as a basis for multitarget tracking is a relatively common one. Examples are the Naval Re-
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search Laboratory's TABS (Tactical Antisubmarine-warfare Battle-management System) tracker, Metron
Corp.'s Nodestar tracker, [22] and others [23]. The work described in this paper differs from earlier
work in its systematic and theoretically rigorous treatment of the "correct" gklk as a PHD: i.e., as a
first-order factorial-moment statistic of the multitarget system.

1.4 A SHORT HISTORY OF HAYES MULTITARGET FILTERING

The concept of multitarget Bayesian nonlinear filtering (Section 1.3) is a relatively new one. If one
assumes that the number of targets is known beforehand, the earliest exposition appears to be due to
Washburn [24] in 1987, using a point process formulation (see Section 2.4 for a summary of point process

theory).

The table summarizffi the history of the approach when the number n of targets is not known and must
be determined along with the individual target states. The earliffit work in this case appears to be due
to Miller, O'Sullivan, Srivistava, et. al. [10] .Their very sophisticated approach requires solution of
stochastic diffusion equations on non-Euclidean manifolds. It is also apparently the only approach to
deal with continuous evolution of the multitarget state. (All other approaches listed in the table assume
discrete state-evolution. ) Mahler was apparently the first to systematically deal with the general discrete
state-evolution case (Bethel and Paras assume discrete observation and state variablffi). Kastella's "joint
multitarget probabilitiffi (JMP)," introduced at Lockheed Martin in 1996, are a renaming of a number
of early core FISST concepts (set integrals, multitarget information metrics, multitarget posteriors, joint
multitarget state ffitimators, etc. ) devised two years earlier [15] .A " JMP" itself is just a discretization

ofa FISST (or, for that matter, a Jump-Diffusion) multitarget posterior:

XnIZ) = fFISST({Xl ,XnIZ}n! fJMP(Xl ,Xn}IZ) = n! fFISST(Xl,

Stone et. al. have provided a valuable contribution by clarifying the relationship between multitarget
Bayes filtering and multi-hypothesis correlation. Nevertheless, their approach is, with regrets, described
as "heuristic" in the table for the reasons summarized in [11, pp. 91-93).

1.5 ORGANIZATION OF THE PAPER

The paper is organized as follows. Basic concepts are covered in Section 2: multitarget moment densities
(Section 2.1); the properties of multitarget moments and the PHD, including their direct construction
using set derivatives (Section 2.2); examples of PHD's (Section 2.3); identification of the PHD as a
first-order statistical moment (Section 2.4); and PHD's in the discrete-state case (Section 2.5). Section
3 is devoted to the Bayes filtering equations for the PHD: the time-update equation (Section 3.1), the
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approximate Bayffi-update equation (Section 3.2) , and prior PHD's (Section 3.3)
are relegated to Section 4. Conclusions may be found in Section 5.

Proofs of the theorems

2.0 MULTITARGET MOMENT DENSITIES AND THE PHD

The purpose of this section is to: ( 1) formally define the concept of a multitarget moment density fu nction
Dklk(XIZ(k)); (2) provide a general procedure for constructing it using the FISST set derivative; and
(3) show that the first-order multitarget moment density Dklk({x}IZ(k)) is the same thing as the Stein-
Winter Probability Hypothesis Density bklk(xIZ(k)). I define multitarget moment densities in Section
2.1, describe their major properties in Section 2.2, provide examples of PHD's in Section 2.3, show that
the PHD is a first-order statistical moment in Section 2.4 and, in Section 2.5, consider PHD's in the
special case when the target state-space is discrete.

2.1 MULTITARGET MOMENT DENSITIES

I begin with a definition:

Definition 1 (Multitarget Moment Densities) [7, p. 169]: The multitarget moment density
is

Notice that Dklk(0IZ(k» = 1. If the number IXI of elements in X is restricted to n then I will
call the function Dklk({X1, ...,Xn}IZ(k» the n'th multitarget moment deMity. Also notice that the
set integral is well-defined in the sense that fklk(X U WIZ(k») always has the same units as X and so
there are no units-mismatch problems of the kind described in [11, p. 39]. For any multitarget state
X = {X1,...'Xn}, Dklk({X1,...,Xn}IZ(k» is the marginal-posterior likelihood that, regardless of how
many targets there may be in the multitarget system, exactly n of them have states X1, ..., Xn.

2.2 COMPUTING PHD'S USING THE SET DERIVATIVE

In this section I show how to construct multitarget moment densities directly from the random multitarget
track-set using the FISST set derivative (Theorem 1) and use this fact to show that the PHD and the
first-order multitarget moment density are the same thing (Theorem 2). I begin by demonstrating the
first result (which will also allow us to compute between-measurement laws of motion for PHD's directly
from multitarget motion models, see Section 3.1). Let rk be the random set of current tracks at time-
step k, meaning that fklk(XIZ{k») is the multitarget density corresponding to the belief-mass function
f3klk(8IZ(k») = Pr(rk ~ 8). Then:

Theorem 1 (Computing Multitarget Moments Using the Set Derivative) [7, p. 169]: Let
Dklk(XIZ(k» be the multitarget moment density corresponding to the multitarget posterior fklk(XIZ(k».
Then: 6

Dklk(XIZ(k») = ~(SIZ(k»

for all finite subsets X of (single-target) state space S.

The proof of this assertion can be found in Section 4.1. It should be compared to the similar formula
for constructing multitarget posterior densities [11, pp. 30-31]:

fklk(XIZ(k» = ~(0IZ(k»
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As already noted, because of Theorem 1 we can show that the first-order moment density and the
PHD are the same thing. If rk n S is the set of tracks contained in S then Irk n si is the number
of tracks in S and E[lrk n SI] is the expected number of tracks in s. Then:

Theorem 2 (The PHD is the First Multitarget Moment Density) [7, p. !69]: For any
measurable subset S £;;; S of state-vectors,

E[lrknslJ = lDklk({x}IZCk»)dX

Consequently, the first multitarget moment density and the Probability Hypothesis Density (PHD) are
equal almost everyhere: bklk(xIZCk) = Dklk({x}IZCk).

See Section 4.2 for the proof.

2.3 EXAMPLES OF PHD's

2.3.1 EXAMPLE 1: INFORMATION LOSS IN PHD's. Information is lost when we
compress a single-target posterior density fklk(xIZk) into its first moment Xklk = ix fklk(xIZk)dx.
Likewise, information is lost when we compress a multitarget posterior fklk(XIZCk)} into its PHD
bklk(xIZCk)}. For example, suppose that we are trying to determine the locations of two targets on the
real-number line based on a single sensor-scan Zl = {Zl,Z2}. Suppose that the multitarget posterior
has the form

flll ( {Xl, x2}IZ(l» = N(72 (Xl -zl)N(72 (X2 -Z2) + N(72 (X2 -zl)N(72 (Xl -Z2)

where N(72(X) = (J2:n:0")-lexp(-x2/20"2) is the normal distribution with variance 0"2. Thecorrespond-
ing PHD and second moment are, respectively,

iJl1l(xIZ(l» = J flll( {x, y}IZ(l»dy = N(72(X -Zl) + N(72 (X -Z2)

Dlil({Xl,X2}IZ(l» = flll({Xl,X2}IZ(l»

Note that jiJl1l(xIZ(l»dx = 2, so that the expected number of targets is two. In general, blll is
bimodal. However, it is easily shown that it is unimodal with maximal value at x = !(Zl +Z2) whenever
IZl -Z21 < 20". The multitarget posterior flll({Xl,X2}IZ(l», on the other hand, is always unimodal (as
a function of a set variable) but fails to distinguish two distinct targets when IZl -Z21 < V20". In this
case its unique maximal value is located at Xl = X2 = !(Zl + Z2). So, for data separations in the range

V20" < IZl -z21 < 20" the multitarget posterior is capable of separating two targets whereas the PHD
is not. This indicates, not unexpectedly, that a PHD-based multitarget tracker will experience more
difficulty with closely-spaced targets than would a tracker based on the full multitarget nonlinear filtering
equations of Section 1.2.

2.3.2 EXAMPLE 2: CLUTTER AND PHD's. Extend the previous example by including
the effects of clutter. Assume that a single sensor observes two targets with no missed detections but
with false alarms governed by the independent clutter process K,( Z) .If we collect one scan Zl = { Zl , Z2 }
consisting of two distinct observations Zl, Z2 and assume a uniform prior then the following multitarget
posterior is the result:

!lll({Xl,X2}IZ(l» = (N,,2(Xl -zl)N,,2(X2 -Z2) + N,,2(X2 -zl)N,,2(Xl -Z2))
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The corresponding PHDwith !lll(XIZ(l» = O whenever X does not contain exactly two elements,
18:

blll(xIZ(l» = ~ L Nu2(X -z)
zEZ

Notice that Jblll(xIZ(l»dx = 2. As a function of the set {Xl,X2}, the multitarget pooterior has
Cm,2 = !m(m-l) peaks. Each peak corresponds to a different hypothesis regarding which two-element
subset of Z are target-generated reports rather than false alarms. Since the PHD condenses multitarget
information into a density on single-target state space, it has at moot m peaks. If targets are sufficiently
separated, each peak corresponds to a different hypothesis about the location of the individual targets.

2.4 THE PHD IS A FIRST-ORDER MOMENT OF A RANDOM SET [7, p. 169]

The purpose of this section is to: (1) show that the multitarget moment density Dklk(XIZ(k» is
identical to the "factorial-moment densities" of point process theory; (2) conclude that the PHD is a first
moment of the multitarget system; and (3) provide an inversion formula for transforming multitarget
moment densities Dklk(XIZ(k» into multitarget pooteriors !klk(XIZ(k»). All unreferenced page numbers
in this section refer to the textbook by Daly & Vere-Jones [4]. Let rk be a random track-set. Then
either the random integer-valued measure

Nk(SIZ(k» = Irk n 81 = L 8rk (x)dx = no. of tracks in rk contained in region S

or its random density function 8rk (x) = LWErk 8w(x) is called a multi-dimensional point process. Point
process theory is a special case of random set theory and, in fact, multi-dimensional point processes seem
to have been originally defined as random sets rather than as random measures [1]. The statistical
behavior ofNk(SIZ(k»-or, equivalently, ofrk and 8rk(X)-is characterized by its family jk,i(Xl,...,Xi)
of Janossy densities (pp. 122-123). Janossy densities are completely symmetric in all arguments; vanish
whenever Xi = Xj for some i # j (p. 134, Prop. 5.4.IV); and are jointly normalized in the sense that
L:o ftjk,i(Xl, ...,Xi) = 1. The multitarget posterior density !klk(XIZ(k» of rk is the same thing as

the family of Janossy densities jk,i of Nk(SIZ(k»:

jk,i(XI, ..., Xi) = fklk( {XI, ..., xi}IZ(k»

(In like manner, the following quantities are just different notations for afor all distinct XI, ...

multitarget posterior
,Xi

fklk({Xl, .,.,Xn}IZ(k)) = fklk(6"Xl + ...+ 6"xnIZ(k)) = fklk(N{Xl,"""'Xn}IZ(k))

where the second and third quantities denote, respectively, p~terior probability distributions over all

point-process densities 6" x or all point-process measures N x. )

The expected value

Mk,[l] (Slz(k) = E[Nklk(Slz(k)] = E[ Irk n SI] = L E[b'rk (x)]dx

is called the expectation measure or first factorial-moment measure of Nk(SIZ(k) (p. 130) Its density

fix (x) fklk(XIZ(k»fiXmk,[lj(X) = E[8r,,(x)] =

with   fi\i(X\Z^) = 0  whenever  X  does not contain exactly two elements, 

m 

Notice that /Di\i(x\Z^)dx = 2. As a function of the set {xux2}, the multitarget posterior has 
Cm,2 = \m(m -1) peaks. Each peak corresponds to a different hypothesis regarding which two-element 
subset of Z are target-generated reports rather than false alarms. Since the PHD condenses multitarget 
information into a density on single-target state space, it has at most m peaks. If targets are sufficiently 
separated, each peak corresponds to a different hypothesis about the location of the individual targets. 

2.4 THE PHD IS A FIRST-ORDER MOMENT OF A RANDOM SET [7, p. 169] 

The purpose of this section is to: (1) show that the multitarget moment density Dk\k(X\Z^) is 
identical to the "factorial-moment densities" of point process theory; (2) conclude that the PHD is a first 
moment of the multitarget system; and (3) provide an inversion formula for transforming multitarget 
moment densities Dk\k(X\Zw) into multitarget posteriors /fc|fc(X|Z(fc)). All unreferenced page numbers 
in this section refer to the textbook by Daly fc Vere-Jones [4]. Let Tk be a random track-set. Then 
either the random integer-valued measure 

N, :(5|Z(fc)) = |rfcnS| = / 6Tk(x.)dx= no. of tracks in Tk  contained in region S 
Js 

or its random density function 5rfc(x) = £werfc *w(x) is called a multi-dimensional point process. Point 
process theory is a special case of random set theory and, in fact, multi-dimensional point processes seem 
to have been originally defined as random sets rather than as random measures [1]. The statistical 
behavior of ATfc(5|Z(fe))—or, equivalently, of Tk and 5rfc(x)—is characterized by its family jfc]i(x1,...,xi) 
of Janossy densities (pp. 122-123). Janossy densities are completely symmetric in all arguments; vanish 
whenever x^ = Xj for some i ^ j (p. 134, Prop. 5.4.IV); and are jointly normalized in the sense that 
ESo ^Jfc,t(xi,...,Xi) = 1. The multitarget posterior density /fc|fc(X|Z(fc)) of Tk is the same thing as 

the family of Janossy densities jk,i of Nk(S\Z^): 

jk,i(Xi>...,Xi) = /fc|fc({xi1...,Xi}|Z(*)) 

for all distinct Xi,...,Xj (In like manner, the following quantities are just different notations for a 
multitarget posterior 

/fc|fc({x1,...,Xn}|ZW) = /fc|fe(5Xl+...-r*xJZ(fc)) = /fc|fc(iV{xi,...,Xn}|ZW) 

where the second and third quantities denote, respectively, posterior probability distributions over all 
point-process densities  Sx   or all point-process measures  Nx-) 

The expected value 

Mki[1](S\zW) = E[Nk]k(S\zW)] =E[|rfc nS|] = js E[«rfc(x)]dx 

is called the expectation measure or first factorial-moment measure of Nk{S\Z^)  (p. 130)    Its density 

mfci[1](x) = E[%(x)] =     6x(x) MX\ZM)6X 



is called the expectation de1l.Sity or first factorial-moment de1l.Sity. Higher-order factorial-moment densi-
ties mk,[ij(Xl,...,Xi) can be defined (pp. 130,112) and, from Definition 1 (Section 2.1), it follows that
(p. 133, equation 5.4.11):

Dklk({XI, ...,Xj}IZ(k» = mk,(j](XI, ...,Xj)

for distinct XI, ..., Xj E S. That is, the Dklk(XIZ(k» are statistical moments of the random set rk and
the PHD is the first factorial-moment density. Moreover, the multitarget posterior density fklk(XIZ(k»
can be recovered from the multitarget moment density Dklk(XIZ(k» via the following set integral (p.
133, equation 5.4.12):

Theorem 3: (Inversion formula for multitarget moment densities) [7, p. 169]:

fklk(XIZ(k» = (-l}IWIDklk(X U WIZ(k)}8W

This formula confirms the obvious fact that the multitarget posterior cannot be completely described
by anyone multitarget moment density Dklk(XIZ(k)} and, in particular, by the PHD iJklk(xIZ(k)}.
Rather, all multitarget moment densities are required to completely recover the information contained in
the multitarget posterior .

2.5 THE PHD IN THE DISCRETE-STATE CASE [7, p. 169]

Suppose that (single-target} state space S is a finite set of target-state cells x. Let r be the randomly
varying track-set and note that !klk(XIZ(k)} = Pr(r = X}. Then:

This result shows that, in the discrete case, the PHD of a random track-set r is the same thing as I.R.
Goodman's one-point covering function JLr(x) = Pr(x E r) = iJ(x) of the random set r. [5,6) The
existence of this relationship is the reason why, in Mathematics of Data Fusion, I used the term "global
covering densities" for what in this paper I call "multitarget moment densities." It also shows that in the
continuous case, the PHD provides a means of representing the zero-probability event Pr(x E r) in much
the same way that the density fx(x) of a continuous random vector provides a means of representing
the zero-probability event Pr(X = x). Furthermore, it is easy to show that

Lbklk(xIZ(k» = LLp(x E x,r = X) = L
"' "' x x

Pr(X) = E[lrnxlJLp(x E X)

\ x

In the fuzzy logic literature, the sum L., Jl(X) is called the "sigma-count" of the fuzzy membership
function Jl and is interpreted as the "number of elements" in the fuzzy set corresponding to Jl.

3.0 RECURSIVE HAYES FILTERING OF THE PHD

In this se(:tion we derive recursive filtering equations for the PHD analogous to the single-target Hayes
re(:ursive filtering equations of Section 1.1. These equations include between-measurements time-update
equations (see Se(:tion 3.1) and an approximate Hayes information-update equation (see Section 3.2).
The construction of prior PHD's is discussed in Section 3.3.

3.1 TIME-UPDATE OF THE PHD

is called the expectation density or first factorial-moment density. Higher-order factorial-moment densi- 
ties mfc[j](xi,...,Xi) can be denned (pp. 130, 112) and, from Definition 1 (Section 2.1), it follows that 
(p. 133, equation 5.4.11): 

Dfc|fc({xi,...,xj}|Z(fc)) = mfc)t,-](xi,...,xj) 

for distinct xx,..., Xj € S. That is, the Dk\k(X\Z^) are statistical moments of the random set T^ and 
the PHD is the first factorial-moment density. Moreover, the multitarget posterior density fk\k(X\Z^) 
can be recovered from the multitarget moment density Dk\k{X\Z^k>) via the following set integral (p. 
133, equation 5.4.12): 

Theorem 3: (Inversion formula for multitarget moment densities) [7, p. 169]: 

fk]k(X\Z™) =     (-1)1^1 Dk{k(X U W\Z^)8W 

This formula confirms the obvious fact that the multitarget posterior cannot be completely described 
by any one multitarget moment density Dk\k{X\Z^) and, in particular, by the PHD Dk\k{x\Z^). 
Rather, all multitarget moment densities are required to completely recover the information contained in 
the multitarget posterior. 

2.5   THE PHD IN THE DISCRETE-STATE CASE [7, p. 169] 

Suppose that (single-target) state space 5 is a finite set of target-state cells x. Let T be the randomly 
varying track-set and note that fk\k{X\Z^) = Pr(r = X).   Then: 

This result shows that, in the discrete case, the PHD of a random track-set V is the same thing as I.R. 
Goodman's one-point covering function pr(x) = Pr(x € T) = D(x) of the random set T. [5,6] The 
existence of this relationship is the reason why, in Mathematics of Data Fusion, I used the term "global 
covering densities" for what in this paper I call "multitarget moment densities." It also shows that in the 
continuous case, the PHD provides a means of representing the zero-probability event Pr(x £ T) in much 
the same way that the density /x(x) of a continuous random vector provides a means of representing 
the zero-probability event  Pr(X = x).   Furthermore, it is easy to show that 

Y,Dk\k{x\zW) = Y,Y,P(x&x'T = x) = Y<  Ep(xe*)   M*) = E[|rn*|] 
x x     X X      v  x 

In the fuzzy logic literature, the sum J2xn(x) is called the "sigma-count" of the fuzzy membership 
function ß  and is interpreted as the "number of elements" in the fuzzy set corresponding to //. 

3.0 RECURSIVE BAYES FILTERING OF THE PHD 

In this section we derive recursive filtering equations for the PHD analogous to the single-target Bayes 
recursive filtering equations of Section 1.1. These equations include between-measurements time-update 
equations (see Section 3.1) and an approximate Bayes information-update equation (see Section 3.2). 
The construction of prior PHD's is discussed in Section 3.3. 

3.1   TIME-UPDATE OF THE PHD 



The between-measurements time-evolution of a single-target posterior is described by the first of the
single-target Hayes filtering equations of Section 1.1. The purpose of this section is to show how to
construct similar laws of motion for PHD's. Let fk+llk(YIX) be the multitarget Markov transition
density that corresponds to some multitarget motion model [11, pp. 21-23) and let fk+llk(YIZCk»)
be the time-predicted multitarget posterior as computed in the first of the multitarget Hayes filtering
equations of Section 1.2. The PHD's corresponding to these two multitarget posteriors are

bklk(xIZ(k)} = ! fklk( {x} U WIZ(k)}8W; bk+llk(xIZ(k» = J fk+llk( { X} U WIZ(k»8W

It might appear that the law of motion relating bk+llk(xIZ(k)) and bklk(xIZ(k)) is nothing more
complicated than the following simple analog of the first Hayes filtering equation:

, k
Dk+llk(YIZ ) =

fk+llk(Y!X) bklk(xIZk)dx

In actuality, this evolution law describes only multitarget motion in which target motions are independent
and the number of targets does not change {Corollary 2 below). We begin, therefore, with a general
result that encompasses quite general multitarget motion models that account for "birth" and "death"
of targets-i.e., targets that enter and leave the scenario for whatever reason. The result itself is less
important than its method of proof {see Section 4.3).

Theorem 4 (Laws of Motion for PHD's): Suppose that between time-step k and time-step
k+ 1, the following multitarget motion model is assumed: { 1) target motions are statistically independent;
{2) the Markov motion model for single targets is fk+llk{Ylx); {3) the probability that any individual
target will not "die" {i.e., not vanish from the scenario) if it has state x at time-step k is dk+lik{X);
and {4) each target with state x at time-step k generates, independently of all other targets, new
"birth" targets in a fashion governed by a FISST multitarget density bk+llk{Ylx). Then:

bk+llk(YIZ(k» = f ( dk+llk(X)!k+l!k(Ylx) + bk+llk(Ylx) ) bklk(xIZ(k»dx

where bk+llk(Ylx) denotes the PHD of the multitarget density bk+llk(Xlx).

The proof can be found in Section 4.3. Let Nklk = J iJklk(YIZ(k»)dx be the expected number
of targets in the track-set rk. Then from Theorem 4 it follows that the expected number Nk+llk of
time-extrapolated targets is

where N:+llk(X) = J bk+llk(Ylx)dy is the expected number of birth targets.

The following is a special case of Theorem 4 that employs a simple state-dependent Poisson model
to account for the appearance of new targets.

Corollary 1 (Law of MotIon for PHD's With Poisson Births ): Suppose that betw~n
time-step k and time-step k + 1, the following multitarget motion model is assumed: (1) target
motions are statistically independent; (2) the Markov motion model for single targets is fk+llk(Ylx); (3)
the probability that any individual target will not "die" is dk+llkj and (4) each state x at time-step k

The between-measurements time-evolution of a single-target posterior is described by the first of the 
single-target Bayes filtering equations of Section 1.1. The purpose of this section is to show how to 
construct similar laws of motion for PHD's. Let fk+i\k(Y\X) be the multitarget Markov transition 
density that corresponds to some multitarget motion model [11, pp. 21-23] and let fk+\\k(Y\Z^) 
be the time-predicted multitarget posterior as computed in the first of the multitarget Bayes filtering 
equations of Section 1.2.   The PHD's corresponding to these two multitarget posteriors are 

Dklk(x\zW) = J /fc]fc({x} U W\Z^)SW,        Dk+llk(x\Z™) = J fk+Mk({x} U W\Z^)8W 

It might appear that the law of motion relating Dk+^k(x\Z^) and Dk^k(x\Z^) is nothing more 
complicated than the following simple analog of the first Bayes filtering equation: 

Dk+1]k{y\Zk) =     /fc+1|fe(y|x) Dk]k(x\Zk)dx 

In actuality, this evolution law describes only multitarget motion in which target motions are independent 
and the number of targets does not change (Corollary 2 below). We begin, therefore, with a general 
result that encompasses quite general multitarget motion models that account for "birth" and "death" 
of targets—i.e., targets that enter and leave the scenario for whatever reason. The result itself is less 
important than its method of proof (see Section 4.3). 

Theorem 4 (Laws of Motion for PHD's): Suppose that between time-step k and time-step 
A:+l, the following multitarget motion model is assumed: (1) target motions are statistically independent; 
(2) the Markov motion model for single targets is /fc+i|fc(y|x); (3) the probability that any individual 
target will not "die" (i.e., not vanish from the scenario) if it has state x at time-step k is rffc+1|j;(x); 
and (4) each target with state x at time-step k generates, independently of all other targets, new 
"birth" targets in a fashion governed by a FISST multitarget density  &fc+i|fc(3^|x).   Then: 

6*+1|fc(y|Z<*>) = J (dfc+1|fc(x)/n.1|fc(y|x) +Sfc+1|fc(y|x)) Dk[k(x\Z^)dx 

where  &fc+i|fc(y|x)   denotes the PHD of the multitarget density  bk+i\k(X\x). 

The proof can be found in Section 4.3. Let Nk\k = f Dk\k(y\Z^)dx be the expected number 
of targets in the track-set Tk. Then from Theorem 4 it follows that the expected number Nk+i\k of 
time-extrapolated targets is 

where  N^+1,k(x) = J bk+i\k(y\x)dy  is the expected number of birth targets. 

The following is a special case of Theorem 4 that employs a simple state-dependent Poisson model 
to account for the appearance of new targets. 

Corollary 1 (Law of Motion for PHD's With Poisson Births): Suppose that between 
time-step k and time-step A; + 1, the following multitarget motion model is assumed: (1) target 
motions are statistically independent; (2) the Markov motion model for single targets is /fc+i|fc(y|x); (3) 
the probability that any individual target will not "die" is dk+\\k; and (4) each state x at time-step k 



generatffi, independently of all other targets, new "birth" targets in a Poisson-distributed fashion with
Poisson parameter '\k+llk and birth distribution bk+llk(Ylx). Then:

bk+llk(YIZ(k») = :bk+llk(Ylx}) bklk(xIZ(k)}dx( dk+llkfk+llk(Ylx) + Ak+

The proof of this fact follows immediately from Theorem 4 by noting that

bk+llk(0Ix) = e
bk+llk( {y

Yn}lx) = e-;Xk- 1/0 Ak+llkbk+llk(Yllx)
bk+llk{Ynlx)

and so

dyn = eAk+llk(bk+llk(8Ixi)-1)b.
Li bk+llk({Yl, Yn}lx)dyl

and therefore

Ik(8Ix;)-1) ] 8=,
).k+1lkbk+ ilk (y IXi )eAk+llk(bk-

A
[ fjbk+llk .

bk+llk(Ylxi) = --gy-(SIXi). = ).k+llkbk+llk(Ylxi=

Note that the time-extrapolated number of targets is Nk+llk = ( dk+1Jk + '\k+llk) Nklk. We conclude
by deriving the l~w of motion for PHD's wh~e between-measurements time-evolution is governed by the
simplest possible multitarget motion model.

Corollary 2 (Simplest Law of Motion for PHD's): Suppose that between time-step k and
time-step k+ 1, the following multitarget motion model is assumed: (1) target number does not change;
(2) target motions are statistically independent; and (3) the Markov transition model for the single-target
motion model is fk+llk(Ylx). Then

bk+l!k(YIZ(k») =
fk+llk(Ylx) bklk(xIZ(k»)dx

The proof of this fact results from setting dk+llk = 1 (no targets disappear) and ;\k+llk = O (no
targets appear) in Corollary 1. Stated in different words: Given this simple multiarget motion model,
the between-measurements time-evolution of the PHD is governed by the same law of motion as that
which governs the between-measurements time-evolution of the posterior density of any single target in
the multitarget system.

3.2 HAYES INFORMATION-UPDATE OF THE PHD

In the single-target case, when a new measurement Zk+l is collected this information can be incorporated
into the time-extrapolated posterior fk+llk(YIZk) using Hayes' rule (the second of the single-target
Hayes filtering equations of Section 1.1). The question that confronts us in this section is as follows.
Suppose that we have collected a new multisensor-multitarget observation-set Zk+l. Let f(ZIX) be
the multisensor-multitarg~t likelihood function that corresponds to some multisensor-multitarget sensor
model [11, pp. 17-20] and let the Hayes-rule update of the time-predicted multitarget posterior be
computed as in the second of the multitarget Hayes filtering equations of Section 1.2. Then given the
corresponding PHD's

fk+llk+l({X} UWIZ(k»)/jW bk+llk(xIZ(k» = fk+llk({X} U WIZ(k)}liWbk+llk+l (XIZ(k+l» =

generates, independently of all other targets, new "birth" targets in a Poisson-distributed fashion with 
Poisson parameter  Xk+i\k  

and birth distribution  &fc+i|fc(y|x).   Then: 

Dk+i\k(y\Zw) =     {dk+1\kfk+llk{y\x) + Xk+   :ftfc+1|fe(y|x)) Dklk{x\Z<-V)dx 

The proof of this fact follows immediately from Theorem 4 by noting that 

h+i\k({y     y«}lx) =e_Ak" lkK+i\kbk+i\k{yi\x)    h+i\k(yn\^)      h+i\k(®\x) = e 

and so 

and therefore 

°k+i\k (y|xi) 
^fc+iifc 

Sy 

f &fc+i|fc({yi,     yn}|x)rfyx     ,fyn = eA*+>i*^+ii»(^)-i) 
Js* 

(S\xi) =  \k+llkbk+llk(y\xi)e
x*+^'»°-  i^l*)-«]        = Afc+1|fc&fc+1|fc(y|Xi 

Note that the time-extrapolated number of targets is Nk+i\k = (dk+1\k 4- \k+i\k) Nk\k. We conclude 
by deriving the law of motion for PHD's whose between-measurements time-evolution is governed by the 
simplest possible multitarget motion model. 

Corollary 2 (Simplest Law of Motion for PHD's): Suppose that between time-step A; and 
time-step k+1, the following multitarget motion model is assumed: (1) target number does not change; 
(2) target motions are statistically independent; and (3) the Markov transition model for the single-target 
motion model is  /fc+i|fc(y|x).   Then 

Dk+i\k(y\Z(k)) =    /fc+i|*(y|x) Dklk(x\zM)dx 

The proof of this fact results from setting dk+1\k = 1 (no targets disappear) and Afc+1|fc = 0 (no 
targets appear) in Corollary 1. Stated in different words: Given this simple multiarget motion model, 
the between-measurements time-evolution of the PHD is governed by the same law of motion as that 
which governs the between-measurements time-evolution of the posterior density of any single target in 
the multitarget system. 

3.2   BAYES INFORMATION-UPDATE OF THE PHD 

In the single-target case, when a new measurement zk+\ is collected this information can be incorporated 
into the time-extrapolated posterior fk+\\k{y\Zk) using Bayes' rule (the second of the single-target 
Bayes filtering equations of Section 1.1). The question that confronts us in this section is as follows. 
Suppose that we have collected a new multisensor-multitarget observation-set Zk+\. Let f(Z\X) be 
the multisensor-multitarget likelihood function that corresponds to some multisensor-multitarget sensor 
model [11, pp. 17-20] and let the Bayes-rule update of the time-predicted multitarget posterior be 
computed as in the second of the multitarget Bayes filtering equations of Section 1.2. Then given the 
corresponding PHD's 

Dk+i\k+MZ{k+1))=     /fc+i|fc+i({x}UW|Z(fe))W Dk+llk(x\zW) =     fk+llk({x}uW\zM)6W 



what rule will allow us to use Zk+l to update bk+llk(xIZ(k» to get bk+llk+l (xIZ(k+l»? As it
turns out, it is not possible to construct a simple recursive update for PHD's that faithfully reflects the
Bayes update on multitarget posteriors.

3.2.1 INFORMATION-UPDATE USING AN APPROXIMATE HAYES' RULE. We
have no choice, then, but to adopt an approximate Bayes update step. One possible approximation is
suggested by turning to the discrete case described in Section 2.5. Assume that current observations
depend only on the current condensed state x-i.e, Pr(Zk+llx E rk+l,z(k» ~ Pr(Zk+llx E rk+l).
Then

bk+llk+l(xIZ(k+l») = Pr(x E rlz(k+l») =

where
iJ(Zlx) = j f(ZI{x} u W) fo({x} UW)8W

jfo({x} u W)8W

The likelihood should be "biased" only by the previous PHD bk+llk(xIZCk). Therefore we assume that
fo(X) is a multitarget uniform density u(X) (see Section 3.3 below).

3.2.2 INFORMATION- UPDATE USING THE APPROXIMATE POSTERIOR OF A
PHD. The work described in this paper can be viewed from a different perspective that, for lack of
space, we can only summarize here. (Details will appear in a subsequent paper.) Let fklk(XIZCk)
be a multitarget posterior, iJklk(xIZCk) its associated PHD, and Nklk = jbklk(xIZCk)dx. We want

to approximate fklk by an approximate multitarget posterior fklk ~ fklk that is covariance-free-i.e.,
w hose multitarget moments are

Dklk(0IZ(k») = Dklk(XIZ(k) = Dklk(XlIZ(k)
Dklk(XnIZ(k)}

where X = {XI Theorem 3 of Section 2.4 yields Jklk,Xn}

Jklk(XIZ(k» = J (-l»)YIDklk(XUYIZ(k»/jY
00

L ~ J (-l)iDklk(xlIZ(k») ...
.=0

Dklk(Xn IZ(k)}Dklk(YlIZ(k)} Dklk(YnIZ(k)}dy dy,

00

Dklk(x..IZ(k)} L
i=O

~
.,

1,.

Dklk(XlIZ(k»)
= e-Nklk Dklk(XlIZ(k)}

Dklk(X'.IZ(k»)

where fklk(0IZCk») = e-Nklk .Because fklk ~ fklk we can propagate fklk in place of fklk. Given this,

Section 3.1 can be interpreted in a different light. We replace fklk and fk+llk by fklk and fk+llk and
determine what law of motion fJklk -+ fJk+llk corresponds to the law of motion fklk -+ fk+llk specified
by the multitarget time-prediction integral of Section 1.2. Theorem 4 emerges as a consequence.

The multitarget Hayes' rule information-update step of Section 1.2) can be interpreted in a similar
manner. That is, we replace fk+llk and fk+llk+l by their approximations fk+llk and fk+llk+l and
then determine what transformation iJk+llk -+ fJk+llk+l of the associated PHD's corresponds to the

what rule will allow us to use Zk+i to update £>fc+1|fc(x|Z(fc)) to get ■Dfc+1|fc+1(x|Z(fc+1))? As it 
turns out, it is not possible to construct a simple recursive update for PHD's that faithfully reflects the 
Bayes update on multitarget posteriors. 

3.2.1 INFORMATION-UPDATE USING AN APPROXIMATE BAYES' RULE.   We 
have no choice, then, but to adopt an approximate Bayes update step. One possible approximation is 
suggested by turning to the discrete case described in Section 2.5. Assume that current observations 
depend only on the current condensed state x—i.e, Pi(Zk+i\x € Tk+i,Z^) = Pr(Zfc+i|x € Tfe+i). 
Then 

wliPirpi 

- _ Jf(Z\{x}UW)fo({x}UW)SW 
K   '  '" ff0({x}U\V)6W 

The likelihood should be "biased" only by the previous PHD Dk+l\k{x\Z^). Therefore we assume that 
fo{X)  is a multitarget uniform density  u[X) (see Section 3.3 below). 

3.2.2 INFORMATION-UPDATE USING THE APPROXIMATE POSTERIOR OF A 
PHD. The work described in this paper can be viewed from a different perspective that, for lack of 
space, we can only summarize here. (Details will appear in a subsequent paper.) Let fk\k(X\Z^) 

be a multitarget posterior, Dk\k{x\Z^) its associated PHD, and Nk\k = j Dk\k{x\Z^)dx.. We want 
to approximate fk\k by an approximate multitarget posterior fk\k = fk\k that is covariance-free—i.e., 
whose multitarget moments are 

Dklk(<D\zM) = Dk]k(X\zW) = Dfc|fc(xj|Z<*>)     Dfc|fc(x„|Z<fc>) 

where  X = {xi     ,xTV}    Theorem 3 of Section 2.4 yields  fk\k 

fk]k{X\Z™)   =   J(-l)^Dm(XUY\Z^)6Y 
oo , 

£-    (-l)iDklk(x1\zW)--Dklk(xn\zW)Dklk(y1\zW)     Dklk(yn\Z^)dy       dy, 
i=0    ' J 

Dklk(Xl\zM)      A^XnlZ«) f; t^tt = c-"H»Dfc|fc(Xl|z(*))      Dklk(Xn\ZM) 
t=0 

where fk\k{%\Z^) = e N"\". Because fk\k S* f^k we can propagate fk\k in place of fk\k. Given this, 

Section 3.1 can be interpreted in a different light. We replace fk\k and fk+i\k by fk\k and fk+\\k and 
determine what law of motion Dk\k —► Dk+\\k corresponds to the law of motion fk\k —► fk+\\k specified 
by the multitarget time-prediction integral of Section 1.2.   Theorem 4 emerges as a consequence. 

The multitarget Bayes' rule information-update step of Section 1.2) can be interpreted in a similar 
manner. That is, we replace fk+i\k and fk+i\k+i by tneir approximations fk+1\k and /fc+i|A:+i and 
then determine what transformation   At+i|fc —> Afc+i|fc+i   °f tne associated PHD's corresponds to the 



iJk+llk+l (xlz, Z(k» = K-1 J(zlx) iJk+llk(xIZ(k», i>k+l (ZIZ(k»

and where K = If(zly)bk+1Ik(YIZ(k»)dy. That is, the Bayes-update step for PHD's is additive-a
property that Stein and Winter call" Weak Evidential Accrual."

3.3 PRIOR PHD's

Let fo(X) be a prior multitarget density [11, p. 37]. Then we can construct the corresponding prior
PHD using the definition of a first multitarget moment function (Definition 1): bo(x) = Ifo({x} U
W){jW. Alternatively, if we specify a prior random track-set r then the prior PHD can be constructed
directly from r using Theorem 1.

For example, suppose that we have n independent tracks with prior densities f1(X), ...,fn(X) and
that the i'th track is believed to exist with probability 1[i. Then the prior track-set is r = r1 u ...u r n
where ri = {Xi} u 0:i .The prior belief-mass function is

/;'o(S) = Pr(r ~ S) = Pr(r1 ~ S) ...Pr(r n ~ S) = (1- 1[1 + 1[lP1(S)) ...(1- 1[n + 1[nPn(S))

where p,(S) = Is fi(X)dx. Using Theorem 1 we find that the prior PHD is

bo(x) =
[ ~(S) ] -= rL(I-1[1+1[lP1(S))...1[iPi(S)...(I-1[n+1[nPn(S))1

s-s l.=l J s=s

= 1[lf1 (x) + ...+ 1[ nfn(x)

The prior expected number of target is, therefore, No = I bo(x)dx = 1[1 + ...+ 1[n.

As another example, suppose that fo(X) is a multitarget uniform distribution [11, p. 37],

n!V-n(M + 1)-1 if X ~ S
O if otherwise

u(X) =

Then for x E 8,

i>o(x) .dXi=

c ~ !=-
V(M + 1) 2 2V

transformation Jk+llk --+ Jk+llk+l specified by the multitarget Hayes' rule. Under certain assumptions
it is possible to derive formulas for bk+llk --+ iJk+llk+l.

Theorem 5 For example, suppose that (1) there is a single sensor with (single-target) likelihood
function J(zlx); (2) target observations are independent; (3) the probability of missed detection PD is
state-independent; (4) Nk+llk < (I-PD)-l; and (5) sensor observations are corrupted by independent,
state-independent, Poisson false alarms with Poisson parameter >. and distribution c(z). Let Zk+l =
{Zl, ...,Zm} denote the latest scan of data. Then it can be shown that

transformation  /fc+i|fc —► /fc+i|fc+i   specified by the multitarget Bayes' rule.   Under certain assumptions 

it is possible to derive formulas for £>k+\\k —*■ -Ök+i|fc+i- 

Theorem 5 For example, suppose that (1) there is a single sensor with (single-target) likelihood 
function /(z|x); (2) target observations are independent; (3) the probability of missed detection pp is 
state-independent; (4) Nk+i\k < (1 ~VD)

1
'I 

and (5) sensor observations are corrupted by independent, 
state-independent, Poisson false alarms with Poisson parameter A and distribution c(z). Let Zk+\ = 
{zi, ...,zm}  denote the latest scan of data.   Then it can be shown that 

Dk+llk+1(x\z,zW) = /f-V(»|x) £»fc+1[fc(x|zW),        Dk+1(z\Z™) 

and where   K = J/(z|y)Dfc+1|fc(y|Z(fe))dy.    That is, the Bayes-update step for PHD's is additive- 
property that Stein and Winter call " Weak Evidential Accrual." 

3.3   PRIOR PHD's 

Let fo(X) be a prior multitarget density [11, p. 37]. Then we can construct the corresponding prior 
PHD using the definition of a first multitarget moment function (Definition 1): .Do(x) = //o({x} U 
W^)6W. Alternatively, if we specify a prior random track-set T then the prior PHD can be constructed 
directly from  T using Theorem 1. 

For example, suppose that we have n independent tracks with prior densities /i(x),...,/n(x) and 
that the i'th track is believed to exist with probability 7Tj. Then the prior track-set is r = riU...ur„ 
where  Tj = {X;} U 0";.   The prior belief-mass function is 

ß0(S) = Pr(r C S) = PrfTi C S) ■ ■ ■ Fr(Tn CS) = (l-ir1+ TTIPI(S)) • • • (1 - irn + nnPn(S)) 

where Pi(S) = Js fi(x)dx.   Using Theorem 1 we find that the prior PHD is 

£>o(x)    = 
6x (S) 

s=s 
^2 (1 - TTi + TVlPl(S)) ■ ■ ■ TTiPi(S) ■ ■ ■ (1 - TTn + TTnpn(S)) 
,t=l s=s 

=     7Tl/l(x) + -. + 7T„/n(x) 

The prior expected number of target is, therefore,  AT0 = f Do(x)dx = ~K\ 4-... + 7Tn. 

As another example, suppose that fo{X)  is a multitarget uniform distribution [11, p. 37], 

u(X) n\V-n(M +1)-1 

0 
if    xcs 
if   otherwise 

Then for xe5, 

A>(x)    = ■rfXi 

V(M + 1) 2V 



No = Is Do(x)dx = !MThe prior expected number of targets is, therefore,

4.0 MATHEMATICAL PROOFS

4.1 PROOF OF THEOREM 1

Let rk be a finite random subset of state space S and let Dklk(XIZ(k») be its corresponding multitarget
moment density. We are to prove that

Dklk(XIZ(k)} =

for all X ~ S, where J3klk(SIZ(k») = Pr(rk ~ S) is the belief-mass function of rk

suppose we knew that

clI(S) = l ~(0)8W

for any meagurable S S;;; S. Then since W n x = 0 almost everywhere it would follow that

and we would be done. So let us prove that <1>(B) = Is -iW(0)8W for <1> = ~. First, by Theorem 17 of
[7, p. 155] we know that

()()

{3klk(8IZ(k») = Lai r fi(X1,

o JS' ,=

xi)dxl d Xi

for some real numbers ak and where ii is a completely symmetric density in i arguments. Thus if we
set

fJi(S) ~ {

lSi
fi(Xl, , xi)dxl d Xi

it follows that

~(S)b'X

00 8fJ. 00
~(S) = -I = Lai--!.(S) = Lai~i(S)

i=O 8X i=O

as desired. To show that <l>i(S} = Is ~(0}{jW, let y = {Yl,
Proposition 19 of [7, p. 159] that

,Yj} with IY! = j and recall from

, yi)

where <I>i ~ * for all i:?: 0. It is enough to prove that <I>i(S} = Is ~(0)fjW for all i:?: 0 since it would

then follow that

The prior expected number of targets is, therefore,   iVo = fs £>o(x)dx = \M. 

4.0 MATHEMATICAL PROOFS 

4.1 PROOF OF THEOREM 1 

Let Tk be a finite random subset of state space S and let Dk\k{X\Z^) be its corresponding multitarget 
moment density. We are to prove that 

Dk\k{X\Zl*>) = 

for all X CS, where ßklk(S\Z^) = Pr(rfc C S) is the belief-mass function of Tfc, 
suppose we knew that 

for any measurable S C S. Then since W D X = 0 almost everywhere it would follow that 

and we would be done. So let us prove that $(S) = Jsj^i^SW for $ = -$jr. First, by Theorem 17 of 
[7, p. 155] we know that 

oo » 

ßm{S\ZW) = J^Oi   /    ffa,        Xi)dXl dXi 

for some real numbers   ak   and where /j is a completely symmetric density in i arguments. Thus if we 
set 

it follows that 

ßi{S) - /   /t(xi>    ,Xi)dxi      dx.i 
Jsi 

OO c/D OO 

t=0 i=0 

where 3>j = -^ for all i > 0. It is enough to prove that $i(S) = Js j^{®)SW for all i > 0 since it would 
then follow that 

as desired.     To show that &i(S) = /5 ff^(0)6W^, let Y = {yi,    ,yj} with \Y\  = j and recall from 
Proposition 19 of [7, p. 159] that 

■>yi) 



If y = X U W with X = {XI
Xn},W={Wl Wj-n}and xn W = 0 then

~(0)=~(0)=O8W 8(X U W)

if Iwl # i -n and

Xn,Wl Wi

otherwise. Accordingly,

=

dWi-n

dWi-..

On the other hand,

~(S) = ~ ( f fi(Wl

6X 6X JSi
<I>i(S} wi)dw1 dWi

=

L 11< ...ii w-Jl#...#J;$i S,-n ( 1 [Wl]jl [Wn]j Wi) .dWl [dWjl] [dwj dw,

where the last summation is taken over all distinct jl,...,ji with 1:::; jl,...,ji :::; i, where [w]j indicates
that the argument Wj has been replaced by x, and where [dwj] indicates that the differential dwj is
excluded. Since ii is symmetric and since there are i!Ci,n terms in the summation we then get

fi((W Xn)dWl dWi-n, Wi-n, XI

Thus cl>i(S) = Is ~(0)8W for all i ?: O and we are done.

4.2 PROOF OF THEOREM 2

We are to prove the following: for any S ~ S

E[ Irk n SI] = 1 Dklk( {x} Iz(k»)dx

Consequently, the first multitarget moment density and the Probability Hypothesis Density (PHD ) are
equal almost everyhere: iJklk(xIZ(k») = Dklk({x}IZ(k»). Let fjW(X) = EWEW fjx(w) and fj0(X) = O
where fjx(W) is the Dirac delta concentrated on x. First note that

!liW(X)!klk(WIZ<k»)liW
+ lix(Wi)) fklk( {Wl=

Wi}/Z(k))dwl dw,+

lfY = XUWwithX = {x1      xn},W = {w1      Wj_n} and X HW = H) then 

§<B>-Ä<*>=° 
if \W\ ^i — n and 

otherwise. Accordingly, 

Xn,Wi Wi 

cfw,- vt—n 

On the other hand. 

S        /      Mwi      [wi]j,      Klj       Wi)-dwi      [dw-J     [dwj       dw. 
l<h*-*h<iJS'  " 

where the last summation is taken over all distinct h,...,ji with 1 < jx,-,3i < », where [wb, indicates 
that the argument W, has been replaced by x, and where [dwj] indicates that the differential d\Vj is 
excluded. Since U is symmetric and since there are i!CiiTV terms in the summation we then get 

/i(Cw ,Wi_n,Xi Xn)dWi rfWj_n 

Thus $i(5) = f8$fy(9)6W for all i > 0 and we are done. 

4.2   PROOF OF THEOREM 2 

We are to prove the following:   for any  S C 5 

E[|r»ns|]= /£>fc|fc({x}|z(*>)dx 

Consequently, the first multitarget moment density and the Probability Hypothesis Density (PHD) are 
equal almost everyhere: Dfc|fc(x|2<*>) = Dfc|fe({x}|Z<*>). Let fff(x) = EwWMw) and *,(x) = 0 
where ox(w)  is the Dirac delta concentrated on x.   First note that 

J Sw(x)fklk(W\Z^)6W    = +    +«x(wi))/fc|fc({w1      wJlzWjdw,     dw, 



Now define the indicator function ls~x) by ls(x) = 1 if x E S and ls(x) = O otherwise. Then

lDklk({X}\Z<k»)dX =

4.3 PROOF OF THEOREM 4

We are to show:

First, notice that by Definition 1 (Section 2.1),

bk+llk(YIZ(k» =

where

Suppose that we know that, given X = {XI, .,Xi},

then we will have

bk+llk(YIZ(k»)

d Xi

I Dk+1Ik(YIX) fklk(XIZ(k»b'X

00 I I i A
?: ii ?: ( dk+1!k(Xj)fk+1Ik(YIXj ) + bk+1!k(YIXj) ) fklk( {X1, ..., xi}IZ(k»)dx1
.=1 )=1

I ( dk+1Ik(X)fk+1Ik(Ylx) + bk+1!k(Ylx) )

Now define the indicator function ls(x)  by  ls(x) = 1  if x € S and  ls(x) = 0 otherwise.   Then 

/ £>fc|fc({x}|Z(fc))dx   = 
Js 

4.3   PROOF OF THEOREM 4 

We are to show: 

First, notice that by Definition 1 (Section 2.1), 

Dk+i\k(y\z™)  = 

where 

Suppose that we know that, given  X = {x.\,    ,Xj}, 

then we will have 

ßfc+i|fe(y|z(fc))        j Dk+i\k(y\x) fklk(x\zW)6x 

5^1 l52(dk+i\k{xj)fk+i\k(y\xj) + h+i\k{y\X})) fk\k{{x-i,-,Xi}\Z{k))dx1     dx.i 
t=i l' S j=i 

/ (dfc+i|jfc(x)/fc+i|fc(y|x) +Sfc+1|fc(y|x)J 



Wj}IZ(k»)dwlfklk({X,Wl, dwj dx
00 1

~"":-j"
\j=oJ.. I

J { dk+l\k(X)fk+llk(Ylx) + bk+llk(Ylx) ) bk+llk(YIZ(k»)dx

as claimed. We must therefore show that

n
bk+llk(YIX) = L ( dk+llk(Xi)!k+llk(Ylxi) + bk+llk(Ylxi) )

i=l

Let Xk+1 = <lIk{X, Wk) be the single-target motion model that corresponds to the single-target Markov

density fk+1Ik{Ylx), let X = {X1, ..., Xn} be the target states at time-step k, let W~ , ..., W~ be i,i.d.

copies of the random noise vector Wk, and let X?+l = <lIk{Xi,Wf), Define rf = {X?+l} n0~'.+II'.(X)

where 0~'.+II'.(X) is a random subset of state space S such that 0~'.+II'.(X) = 0 with probability 1 -

{ ) 0d,.+II'. S ' h b b'I ' d { ) Wi Is h 0d'.+11,.(x) 0d,.+II'.(X)dk+1lk X and i = W1t pro a 11ty k+1lk X, e a o assume t at 1 , ..., n

, , d d h 0d,.+II'.(X) 0d,.+II'.(X) W k W k t t ' t ' II ' d d t Th r k 0 'thare 1,1, , an t at 1 , ..., n , l' ..., n are S a lS 1ca y m epen en, en i = W1

probability 1- dk+1Ik{X) and rf = {X~+l} with probability dk+1Ik{X), Furthermore, by assumption
each target with state x at time-step k generates, independently of all other targets, new "birth"

targets at time-step k + 1 in a manner governed bya multitarget density bk+1ik{Xlx). Translated into

mathematical terms the multitarget motion model is, therefore,

u rk U Bk Un 1 UBk
n

rk+l = r~ l

md the corrffiponding belief-mass function is

fJk+llk(SIX) = Pr(rt U ...U r~ u Bf u ...u B~ £;;; S)

= pr(rt £;;; S) ...Pr(r~ £;;; S) Pr(Bf £;;; S) ...Pr(B~ £;;; S)

= (1- dk+llk(Xl) + dk+llk(Xl)Pk+llk(Slxl) ) ...(1- dk+llk(Xn) + dk+llk(Xn)Pk+llk(SIXn) )

.bk+llk(Slxl) ...bk+llk(SIXn)

where bk+llk(Slx) = fbk+llk(Xlx)/jX is the belief-mass function corresponding to the multitarget

density function fk+llk(XIZ(k»). The first-order set derivative is

n

2::: (1- dk+llk(Xl) + dk+llk(Xl)Pk+llk(8Ixl»)

i=l

-

8
";5;; (1- dk+llk(Xi) + dk+llk(Xi)Pk+llk(8Ixi))

(1- dk+llk(Xn) + dk+llk(Xn)Pk+llk(8\Xn) )

, c , ~bk+llk(8Ixi) ...bk+llk(8IXn)
n

.L bk+llk(Blxl) ...8i=l y
n

L (1- dk+llk(Xl) + dk+llk(Xl)Pk+llk(Blxl))
i=l

dk+llk(Xi)!k+llk(Ylxi)

J (<4+1|fe(x)/fc+i|fc(y|x) + Sfe+i|fc(y|x)) Dk+Mk{y\z^)dx 

as claimed.   We must therefore show that 
n 

Dk+i\k(y\x) = Y^ (dk+i\k(xi)fk+i\k(y\xi) + ^+i|fc(y|xi)J 
i=l 

Let Xfc+1 = $fe(x, Wfc) be the single-target motion model that corresponds to the single-target Markov 
density /fc+i|fc(y|x), let X = {xi, ...,x„} be the target states at time-step k, let WJ\.... W* be i.i.d. 

copies of the random noise vector Wfc, and let X*+1 = **(*, Wf). Define Tk = {Xk+1} n 0f*+>'*(x) 

where 0^+1|fc(x) is a random subset of state space 5 such that 0^+1|k(x) = 0 with probability 1 - 

dfc+1|fc(x) and 0f*+1|fc=S with probability 4+i|fc(x). We also assume that 0?fc+1|fe(x),...,0£fc+1"°(x) 

are i.i.d. and that 0f°+1ifc(x), ...,0*fc+1|fc(x), Wj,..., W£ are statistically independent. Then Tk = 0 with 
probability l-4+i|fc(x) and Tk = {Xk+1} with probability dfc+1|fc(x). Furthermore, by assumption 
each target with state x at time-step k generates, independently of all other targets, new "birth" 
targets at time-step k +1 in a manner governed by a multitarget density bk+1\k(X\x). Translated into 
mathematical terms the multitarget motion model is, therefore, 

rfc+1=r^L    ur*uB?u   uBk 

md the corresponding belief-mass function is 

ßk+i\k(S\X)    =   Pr(TkU...UTkDBkL)...UBkCS) 

=   Pr(r* C S) • ■ • Pr(r£ C S) Pr(Bk C S) • • • Pr(ß£ C S) 
=    (1 - dfc+i|fc(xi) -I- dfc+i|fc(xi)pfc+1|fc(5|xi)) •••(!- dfc+1|fe(x„) + dk+llk(xn)pk+i\k{S\xn)) 

■bk+i\k(S\x-i) ■ ■ ■ bk+i\k(S\xn) 

where   6fc+i|fc(S|x) = Jbk+1\k(X\x)6X    is the belief-mass function corresponding to the multitarget 

density function fk+i\k{X\Z^).   The first-order set derivative is 

n 

=   ^2 (l - dfe+i|fc(xi) + 4+i|fc(xi)Pfc+i|fc(S'|xi)) 
i=l 

S 
— (1 - dfc+i|ik(xi) + dk+1\k{xi)pk+1\k(S\xi)) 

(1 - dfc+l|fc(Xn) + dfc+l|fc(Xn)Pfc+l|fe(5'|xn)) 

1 = 1 

n 
^ (1 - 4+i|fc(xi) + dfc+i|fc(xi)pfc+i|fc(5|x1))     dfc+i|fe(xi)/fc+1|fc(y|xi) 
i=l 



Setting s = s and using the fact that bk+llk(Slxi) = 1 for all i we get

bk+llk(YIX) =

as dffiired

5.0 CONCLUSIONS

In this paper I have used finite-set statistics (FISST) to provide a systematic and theoretically rigorous
theoretical framework for the Stein-Tenney Probability Hypothesis Density (PHD) multitarget tracking
approach. After framing the optimal multitarget tracking problem as a multitarget recursive Hayes
filtering problem, I showed that the PHD is actually a first-order statistical moment of the time-evolving
random track-set rk. Consequently, the PHD approach can be interpr:eted as a multitarget analog of
a constant-gain Kalman filter (e.g., the a-fJ-"'f filter). I showed how PHD's can be computed directly
using the "set derivative." I also showed how the conventional single-sensor, single-target recursive Hayes
filtering equations can be generalized to the PHD case (though, in the case of the Hayes update step, this
generalization can be only approximate) .

Given this, from a computational point of view real-time optimal multitarget tracking is reduced
to the problem of implementing a real-time single-target nonlinear filter that is capable of modeling the
rather complex time-evolution of the PHD. This is in itself a difficult research problem that will not
be successfully addressed by thirty-year-old techniques copied from textbooks. Rather, it will require
advanced techniques currently under development by a number of researchers. See [11, pp. 5-6, 15-16]
for a brief discussion of the major computational issues and some of the major computational strategies. )

The approach outlined here can, in principle, be generalized to develop a filtering approach based
on the second-order multitarget moment densities Dklk({Xl,X2}IZ(k)): Since second moments can be
reformulated to have the general form of a covariance, it is aso possible in principle to develop a statistical
multitarget analog of the Kalman filter .
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filtering problem, I showed that the PHD is actually a first-order statistical moment of the time-evolving 
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